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Erodible, granular beds are fragile†

Diego Berzi, *a James T. Jenkinsb and Patrick Richardc

Geophysical flows that involve the transport of grains and the shearing of colloids and non-Brownian

suspensions often take place above a substrate composed of the same particles that can be

incorporated into the flow. Despite the importance of understanding such erodible beds to the phrasing

of appropriate boundary conditions for the solution of continuum models, a rigorous definition of the

erodible bed and the constitutive relations for the stresses within it are still lacking. Here, we use

discrete-element simulations to show that the intense, intermittent forming and breaking of contact

chains marks the transition to the erodible bed at a critical solid volume fraction, as in shear jamming of

steady, homogeneous flows. However, the compressible, collisional flow that confines the bed is not

strong enough to insure the stability of the contact network, resulting in a bulk stiffness that is three

orders of magnitude less than in shear jamming.

Many geophysical flows of interest in Nature, such as turbidity
currents,1 Aeolian2 and aquatic sediment transport,3 and debris
flows,4 involve contact with a bed of solid particles that apparently,
are immobile. Although it is now clear that the particles in the
erodible bed creep,5,6 their contribution to the total transport is
almost always negligible. However, mathematical continuum
models of geophysical flows require boundary conditions at the
interface between the flow and the bed and the quantification of
the mass and momentum exchange across it.7,8 In this regard, a
better understanding of the physics that governs the erodible beds
is crucial.

To obtain this here, we make use of discrete element simulations
of inelastic, frictional spheres in steady, unidirectional flows, both
homogeneous and inhomogeneous (Fig. 1a–e). In these, the
particles interact thorough linear springs and dashpots in both
the normal and tangential directions. Particles are either identical
or slightly polydispersed spheres with an average diameter d,
maximum polydispersity equal to 20%, and mass density rp,
characterized by a coefficient of normal collisional restitution e
and sliding Coulomb friction m. The stiffness of the linear
normal spring in the interaction model is k. See the ESI† for
more details about the numerical simulations.

In homogeneous, steady shearing flows, in which either the
volume or pressure is imposed (Fig. 1a and b), the solid volume
fraction, n, is uniform over the domain. These flows are then
commonly used to infer information about the local rheological

behaviour of granular materials,10,11 to be applied in more
complex situations. When gravitational acceleration, g, and/or
lateral confinement are present, inhomogeneity in the distribution
of solid volume fraction develops. Then, we may distinguish
between a region in which the particles mainly interact through
collisions and the shear rate is significant, the flow, and a region
where contacts are enduring and the shear rate is exponentially
decaying, the bed. Inhomogeneity in the presence of a bed typically
occurs in steady and fully developed pressure-imposed shear flows
(Fig. 1c), chute flows (Fig. 1d) and inclined, free surface flows
between frictional sidewalls (Fig. 1e).

The identification of the location of the interface between
the flow and the bed is, however, challenging. In the case of
inclined, free surface flows, for example, the profiles of the
mean velocity, u, solid volume fraction and average number of
contacts per particle (the coordination number), Z, are continuous,
with no obvious signature of a transition to the bed (Fig. 1f–h).
Richard et al.6 take the interface between the flow and the erodible
bed to be where the ratio of the shear stress, s, to the pressure, p,
reaches a characteristic value associated with yielding. This value
for the stress ratio has been largely adopted as a boundary
condition for flows over erodible beds.12–15 Richard et al.,6 however,
noted that the solid volume fraction also reaches a characteristic
value at the interface with the erodible bed. The existence of a
particular solid volume fraction, marking the transition from flow to
bed, hints at the role played by the configurations of the grains and
the space available for their motion.

Existing simulations of volume-imposed simple shearing10

show that rate-independent components of the stresses are present
only above a critical volume fraction, nc, which is a decreasing
function of the coefficient of sliding friction. Because there is
one-to-one relation between solid volume fraction and coordination
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number in simple shearing,16 a critical coordination number,
Zc, also exists. Both nc and Zc are independent of the particle
stiffness.17,18 Given that Zc is greater than four for all values of
coefficient of sliding friction,16 the simple shearing flows with
n Z nc can be identified as mechanically stable, shear-jammed
states.19 Berzi and Jenkins11 modelled these as networks of
springs, in which the nodes are continuously changing due to
the particle re-arrangement, with the springs, on average,
compressed, due to the particle overlaps. The spring compression
is responsible for the rate-independent components to the stresses
and their proportionality to the particle stiffness, while the
fluctuations in the node velocity and the associated momentum
exchange are responsible for the rate dependence.

Three methods have been proposed to identify the critical
volume fraction in discrete element simulations of simple
shearing. First, by measuring the ratio of contact duration to
passage time in simple shear over a range of volume fractions
and plotting curves of coordination number versus volume
fraction for different values of the ratio. Such curves intersect
at the critical point, providing both nc and Zc.17,18 Second, by
plotting the dimensionless pressure pd/k as a function of the
time ratio for different values of the solid volume fraction. The
minimum value of the solid volume fraction for which pd/k
becomes independent of the time ratio, as the ratio approaches
zero, is nc

10 – that is, at which the pressure in the rigid limit is rate-
independent. Third, by taking advantage of the large fluctuations
in coordination number and pressure observed near nc, as the
network of contacts intermittently forms and breaks.10 A plot of
the standard deviation of the fluctuations in coordination versus

volume fraction shows a peak at nc. Only this third criterion can be
easily applied to inhomogeneous flows.

The temporal evolution of the coordination number at
different elevations above the rigid base for the inclined, free
surface flows shows that the fluctuations in coordination number
are maximum at a particular elevation above the rigid base.
Assuming that the peak in the local standard deviation of Z, sZ,
is a signature of the intermittent breaking and forming of
contacts at the interface between the flow and the bed, the
location of the latter can, therefore, be identified (Fig. 2a). A plot
of sZ as a function of n (Fig. 2b) permits the identification of the
solid volume fraction that marks the transition from the flow to

Fig. 1 Configurations and qualitative profiles of mean velocity in the flow direction: (a) volume-imposed simple shear flow in a periodic cell;9 (b and c)
pressure-imposed shear flow in the absence and presence of gravity, respectively; (d) pressure-imposed chute flow; (e) inclined, free surface flow
between frictional sidewalls. Profiles of: (f) dimensionless mean velocity, (g) solid volume fraction and (h) coordination number, shown in the case of an
inclined, free surface flow, with y = 301 and the sidewalls 30 diameters apart.

Fig. 2 Inclined, free surface flow between frictional sidewalls with y = 241
and sidewalls 30 diameters apart: standard deviation of the fluctuations in
the coordination number as a function of (a) elevation and (b) local, mean
solid volume fraction. The solid, vertical line in (b) is at n = 0.587, the value
of nc when m = 0.5.10
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the bed. This solid volume fraction is remarkably close to the
critical value 0.587 identified in volume-imposed simple shear-
ing of frictional particles for the same sliding friction, m = 0.5.10

This suggests that the transition from flow to bed is where the
solid volume fraction reaches the critical value at which rate-
independent components of the stresses arise in homogeneous
flows. Consequently, it is reasonable to apply constitutive relations
that successfully describe the stresses in volume-imposed simple
shearing when n Z nc

11 to the particles in the erodible bed.
Berzi and Jenkins11 express the pressure for volume fractions

above the critical volume fraction as

pd

k
¼ 5nð1þ eÞ

6

rpTd
k

� �1=2

þ0:6 n � ncð Þ; (1)

where the first term on the right-hand side is the rate-dependent
component associated with momentum exchange in collisions,
with the frequency of collisions inversely proportional to the
contact duration; and the second is the rate-independent com-
ponent. The rate-independent component is the lower limit for
the pressure, when n exceeds nc, as confirmed in the volume-
imposed simple shearing simulations of Chialvo et al.10 However,
in the inclined, free surface flows, the pressure for volume
fractions above the critical is orders of magnitude less than
that predicted by eqn (1) (Fig. 3).

In an attempt to understand this, we performed volume-
imposed simple shearing simulations of particles with the
same coefficients of restitution and sliding friction as in the
inclined free surface flows. The simulations were carried out at
different values of the solid volume fraction, matching the
corresponding values of the ratio of the contact duration,
tc = (rpd3/k)1/2, over the passage time, ts = 1/u0, where u0 is the
shear rate, measured in the inclined flow. A plot of the
coordination number versus the solid volume fraction (Fig. 4)
highlights two key points.

First, for nr nc, the coordination number is less than unity,
both in volume-imposed simple shearing and in inclined,

free surface flows, even for volume fractions as large as 0.57. That
is, in the absence of a network of contacts, particle interact essen-
tially through binary, nearly instantaneous collisions, thus justifying
the use of kinetic theory of granular gases, even for very dense flows.

Second, when n exceeds nc, the contact network in volume-
imposed simple shearing is mechanically stable, given that
Z Z Zc Z 4. The use of periodic boundary conditions permits
the contact network to extend indefinitely in the domain, and
shearing requires significant compression of the particles, thus
generating enormous stresses. In inclined, free surface flows,
however, nc can be exceeded at values of the coordination number
less than Zc. The contact network is not then mechanically stable
and particle rearrangement is possible without a dramatical
increase in the stresses. Therefore, we distinguish between a
shear-jammed state, when nZ nc and Z Z Zc, and a fragile state,
when n Z nc and Z o Zc.

It has been shown for volume-imposed simple shearing of
frictional particles10 that when the dimensionless pressure,
pd/k, and the dimensionless shear rate, u0/[k/rp/d3]1/2, equal
to the ratio tc/ts, are scaled with some powers of the distance to
jamming, |n� nc|, the relation between pressure and shear rate can
be represented by two universal curves, one for no nc and one for
nZ nc. This is compatible with the theory of Berzi and Jenkins,11 in
which it is suggested that the exponent of the distance to jamming
should be unity in both the scaled pressure and shear rate.

Indeed, in simple shearing, the fluctuation energy produced
by the working of the shear stress balances the rate at which
fluctuation energy is dissipated in collisions, so that the granular
temperature T is proportional to (u0d)2, through a function of the
solid volume fraction that remains finite at n = nc.

20

With this, it is straightforward to show that eqn (1) can be
rewritten as a relation between the scaled pressure pd/(k|n � nc|)
and the scaled time ratio tc/(ts|n � nc|) with two asymptotes. The
first is when tc/(ts|n � nc|) goes to zero (the rigid limit), so that
pd/(k|n � nc|) is proportional to [tc/(ts|n � nc|)]0; that is, the
pressure originates from the persistent compressions of the

Fig. 3 Dimensionless pressure pd/k as a function of solid volume fraction
in simulations of volume-imposed simple shearing10 (triangles) at different
values of time ratio tc/ts and in simulations of inclined, free surface flows
(circles) with y = 301 and sidewalls 30 diameters apart. The solid line is the
rate-independent component in eqn (1).

Fig. 4 Coordination number as a function of solid volume fraction in our
volume-imposed simple shearing (six-pointed stars) and in our inclined,
free surface flows (circles) with y = 301 and sidewalls 30 diameters apart.
The vertical and horizontal solid lines identify the critical point, nc = 0.58710

and Zc = 4.3,16 for shear jamming when m = 0.5.
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springs in the contact network and is rate-independent
(the shear-jammed regime). The second is when tc/(ts|n � nc|)
goes to infinity (the soft limit), so that pd/(k|n � nc|) is propor-
tional to [tc/(ts|n � nc|)]1; that is, the pressure originates from
momentum exchange during particle rearrangement with the
frequency of interaction equal to the inverse of the contact
duration (the soft collisional regime). The latter asymptotic
regime is also shared by particle flows at n o nc, when
tc/(ts|n � nc|) goes to infinity, showing little to no dependence
on the solid volume fraction.11

In the rigid limit, when n is larger than 0.5, but less than nc,
the pressure is given by the classic expression of kinetic theory,
p p rpT/(nc � n), where the dependence on the solid
volume fraction results from the divergence of the probability
of having two particles in contact as nc is approached.21 In
simple shearing, this corresponds to a third asymptotic regime,
that is pd/(k|n � nc|) proportional to [tc/(ts|n � nc|)]2, when
tc/(ts|n � nc|) goes to zero (the rigid collisional regime). All the
data from the simulations considered in the present work are
shown in Fig. 5, in terms of dimensionless pressure against
dimensionless shear rate.

A fourth, asymptotic, rate-independent regime, that we identify
as the fragile regime, is clearly visible. Data in this regime belong
only to pressure-imposed shear, chute and inclined, free surface

flow simulations, where a region in which nZ nc (the erodible bed)
is in contact with at least one region in which no nc and the mean
interparticle distance is greater than zero. The collapse of the data
coming from different configurations and sources is suggestive of a
universal behaviour of the grains in the erodible bed.

There are two reasons for the scatter of the data in Fig. 5.
First, there is a residual dependence on the solid volume fraction
in the relation between the granular temperature and the shear
rate, even in simple shearing, that is not completely captured in
terms of powers of |n� nc|. Second, in inhomogeneous flows, the
shear rate and the granular temperature are related through a
differential, not an algebraic, equation. The granular temperature
is a more fundamental variable and should be employed instead
of the shear rate. However, some datasets do not include the
granular temperature, but only the shear rate. Also, the granular
temperature is very sensitive to the size of the cells employed for
coarse graining the measurements in the simulations,23 thus
adding another source of scatter.

It is also worth mentioning that other authors10 have
employed different powers of the distance to jamming to scale
the dimensionless pressure and shear rate. This has no conse-
quence, however, on the slopes associated with the shear-jammed,
fragile and rigid collisional limits in Fig. 5 and, therefore, on our
findings about the nature of the erodible beds. Only the slope of the

Fig. 5 Scaled pressure versus scaled time ratio for: simulations of volume-imposed simple shearing10 (red triangles) and our work (blue six-pointed
stars); simulations of pressure-imposed simple shearing, shear flows and chute flows22 (magenta squares); simulations of inclined, free surface flows
(black circles). Open and filled symbols refer to volume fractions less than and greater than the critical, respectively.
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soft collisional limit is affected by the exponents of |n� nc|, because
the pressure there is independent of the solid volume fraction, at
least in dense situations.

We contend that the difference between the shear-jammed
of volume-imposed simple shearing and the fragile state of
inclined, free surface flows in Fig. 4 and 5 is due to the fact that
the contact network in the former extends indefinitely, because
of the use of periodic boundary conditions, thus making it
mechanically stable. In contrast, in an inclined, free surface
flow, the top of the erodible bed is in contact with a collisional
region that can be easily compressed, thus facilitating the
buckling of the contact chains in the erodible bed, leading to
mechanical instability and low coordination number (Fig. 6).

The role of the boundaries can be assessed by performing,
for example, simulations of pressure-imposed simple shearing
and vertical chute flows, in which the dimensionless pressure,
pd/k, is kept constant.25 In both configurations, the flow is
confined between two rigid, rough boundaries that enforce a
no-slip boundary condition. In the pressure-imposed simple
shearing, the solid volume fraction is uniformly distributed, so
that once the volume fraction exceeds the critical, it does that
everywhere. In this case, the contact network spans the entire
domain and both ends of the contact chains are in contact with
solid boundaries. In the vertical chute flow, instead, the critical
volume fraction is exceeded only in a core region that is bounded
by two compressible, collisional flows (inset of Fig. 7). When pd/k
is constant, the equation of state (eqn (1)) reduces to a universal
relation between the dimensionless granular temperature, rpdT/k,
and the solid volume fraction, at least in simple shearing.11

Fig. 7 shows that the granular temperature in the two config-
urations begins to differ at the critical volume fraction, reinforcing
the idea that nc is representative of both shear jamming and the
transition to an erodible bed. In the latter, the presence of
compressible, collisional, bounding regions permits far greater
fluctuations in the particle velocity than in the pressure-imposed
simple shearing case, consistent with the idea that the contact
chains are more prone to buckling and the particles experience
more intense rearrangements.

In conclusion, we have employed discrete element simulations
of steady flows, in which frictional spheres interact through linear

springs and dashpots, to investigate the physics of erodible beds.
These are regions in which the solid volume fraction exceeds a
critical value for the development of a persistent network of chains
that are in contact with compressible, collisional flows. The
continuous breaking and forming of chains at their interface with
the flow causes strong temporal fluctuations in the coordination
number, and this permits the identification of the critical volume
fraction with that at shear jamming in simple shearing.

Unlike in shear-jammed states, the contact network in
erodible beds has a lower coordination number than that
required for mechanical stability. It is the action of a compressible,
collisional flow that buckles the chains and creates a fragile
contact network that is far more agitated than shear-jammed,
granular assemblies at the same value of solid volume fraction.
This explains why erodible beds creep slowly, but easily, even
under mild shearing.5,6 This description is consistent with the
distinction between fragile and shear-jammed states in anisotropic
compression of frictional packings of disks based on the per-
colation of the contact network along the compressive direction
or along both compressive and dilational directions.19

We have indicated that the behaviour of the erodible bed is
universal: if the particles are sufficiently rigid, the pressure in
the erodible bed is rate-independent and proportional to the
particle stiffness – another indirect proof of the existence of a
persistent contact network. Shear jammed states also manifest
rate-independence, but the effective stiffness is roughly three
orders of magnitude larger than that in the erodible beds.
The much weaker bulk stiffness of the contact network in the
erodible bed, with respect to the shear-jammed state, might
have important implications, for example, in those geophysical
applications in which granular assemblies are subjected to
small strains and behaves elastically.25 It might also have
strong implications in the problem of particle erosion, at least
in those cases where the latter is driven by pressure perturbations
propagating in an erodible bed.26 We have noted that the coordina-
tion number in almost the entire flow in contact with the erodible

Fig. 6 Snapshots of particle positions (left, coloured based on velocity
intensity, with umax maximum velocity in the flow direction) and force
chains (right) in an inclined, free surface flow, with y = 301 and the sidewalls
30 diameters apart. There are three flow regimes: collisional flow with near-
instantaneous, uncorrelated, binary collisions well above the bed; collisional
flow closer to the bed with correlated collisions and enough overlaps to
produce short force chains; and a mixture of collisions and contacts within
the bed that generated force chains that extend to the base of the flow.

Fig. 7 Dimensionless granular temperature as a function of solid volume
fraction for pressure-imposed simple shearing (open squares) and vertical chute
flow (filled squares) simulations, with pd/k = 5 � 10�6.22,24 The solid line is at
n = 0.589, the value of nc when m = 0.4.16 The gray region in the sketches of the
two configurations is the region in which n exceeds the critical.
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bed is less than unity, indicating that collisions are binary and
instantaneous. Hence, the largely accepted idea that models of dense
granular flows must incorporate enduring and multiple contacts
between the particles27,28 has little physical justification.

Future work shall focus on the influence of the contact model
on our findings on the behaviour of erodible beds; although it is
known that employing true Hertzian, rather than linear contacts
has little effect on sufficiently rigid particles in the collisional
regime, in which the contact duration is much less than the time
of free flight, and in the shear-jammed regime.16 Also, the
physical explanation, based on first principles, of the relatively
small stiffness of the contact network in erodible beds remains
an open issue. Finally, the study of pressure-imposed shear flows in
the presence of lateral confinement, i.e., an intermediate con-
figuration between inclined, free surface and pressure-imposed
shear flows,29,30 might provide further insights on the possible
transition from a fragile to a shear-jammed contact network.
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